Abstract

Plant polyphenolics exhibit a broad spectrum of health-promoting effects when consumed as part of the diet, and there is considerable interest in enhancing the levels of these bioactive molecules in plants used as foods. AtMYB12 was originally identified as a flavonol-specific transcriptional activator in Arabidopsis thaliana, and this has been confirmed by ectopic expression in tobacco. AtMYB12 is able to induce the expression of additional target genes in tobacco, leading to the accumulation of very high levels of flavonols. When expressed in a tissue-specific manner in tomato, AtMYB12 activates the caffeoyl quinic acid biosynthetic pathway, in addition to the flavonol biosynthetic pathway, an activity which probably mirrors that of the orthologous MYB12-like protein in tomato. As a result of its broad specificity for transcriptional activation in tomato, AtMYB12 can be used to produce fruit with extremely high levels of multiple polyphenolic anti-oxidants. Our data indicate that transcription factors may have different specificities for target genes in different plants, which is of significance when designing strategies to improve metabolite accumulation and the anti-oxidant capacity of foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.