Abstract

ABSTRACTIn this work, a planar heterojunction superstrate n-i-p device based on Zn(O,S) electron transport layer and CsPbI2Br absorber material at 1.93 eV bandgap is presented. The CsPbI2Br films are deposited using a 2-step atmospheric solution deposition process and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL). Best device with an efficiency of 12.34 % and 11.94% in reverse and forward scans respectively and stabilized power output of 12.14 mW/cm2 has been demonstrated via atmospheric solution processing with minimal hysteresis between forward and reverse scans. The devices show voltage dependent current collection as well as light-dark crossover in forward bias. Light soaking tests at 65 °C and 1-sun at Voc, resulted in open-circuit voltage and fill-factor degradation. Electroluminescence (EL) after 100 hours of light soaking shows a reduction in overall EL intensity as well a shift in emission to lower wavelength. The devices exhibit a positive temperature coefficient of about 0.14 %/°C. It is found that Zn(O,S) is a viable alternative electron transport layer to replace TiO2. By replacing methylammonium cation with cesium and addition of Br has improved the stability of the perovskite phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call