Abstract

The time series of precipitable water (PW) in 30 min intervals has been determined through experimentation and operational application of a ground-based global positioning system (GPS) network in Chengdu Plain, which is used for precise and reliable meteorological research. This study is the first to apply PW to the southwest vortex (SWV) and heavy rain events by using the data from an intensive SWV experiment conducted in summer 2010. The PW derived from the local ground-based GPS network was used in the monitoring and analysis of heavy rain caused by the SWV and the Tibetan Plateau vortex (TPV). Results indicate that an increase in GPS precipitable water (GPS-PW) occurs prior to the development of the TPV and SWV; rainfall occurs mainly during high levels of GPS-PW. The evolution features of GPS-PW in rainfall process caused by different weather systems over the Tibetan Plateau (TP) also differ. These results indicate the reference values for operational applications of GPS-PW data in short-term forecasting and nowcasting of high-impact weather in addition to further investigation of heavy rain caused by the TPV, SWV, and other severe weather systems over the TP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.