Abstract

The Linke TL, Angstrom β and Unsworth-Monteith δa turbidity parameters are investigated for two sites in Egypt: Cairo, a densely populated urban area, and Aswan, an arid unpolluted area. These three turbidity parameters are calculated from broadband pyrheliometric measurements recorded hourly over the period 1992–96. Monthly averages of TL, β and δa show relatively flat and identical seasonal variations with a marked main maxima during spring at both sites, due to Khamsin depressions coming from the Great Sahara. A secondary maximum is observed at Aswan in summer, due to dust haze which prevails during that season, and at Cairo in autumn, due to the northern extension of the Sudan monsoon trough, which is accompanied by small scale depressions with dust particles. Annual mean values of TL, β and δa (5.59, 0.250 and 0.372, respectively) at Cairo are larger than at Aswan (3.89, 0.139 and 0.213, respectively). In the same way, the seasonal mean values of TL, β and δa at Cairo are larger than at Aswan. More generally, the monthly and yearly average turbidity values are significantly larger in Cairo than in Aswan for the whole period 1992–96, which is attributable in part to the urbanization/industrialization effect of Cairo. An estimate of the corresponding overburden is obtained by comparison between the present data and older TL data from 1922–27. It is also shown that turbidity over both sites is largest during 1992, just after the eruption of Mount Pinatubo in 1991. The dependence of β on some meteorological parameters such as wind speed and direction, precipitable water, relative humidity, temperature and visibility, is also analyzed. This reveals in particular that visibility is not a good predictor of turbidity at either site. Conversely, the wind direction and speed have a definite effect on turbidity, and consequently, largest turbidities occur when the wind carries aerosols from the main industrial particle source areas around Cairo. For any season of the year, the average turbidity at the latter site is larger than that at other big cities such as Athens, Rome, and Toronto, but is lower than at Dhahran, Saudi Arabia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call