Abstract

In high-altitude nuclear detonations, the proportion of pulsed X-ray energy can exceed 70%, making it a specific monitoring signal for such events. These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission. To quantitatively analyze the effects of different satellite detection altitudes, burst heights, and transmission angles on the physical processes of X-ray transport and energy fluence, we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction. The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays. The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method. Our improved method reduces this error to within 10% under the same conditions, even reaching 1% in certain scenarios. Moreover, its computation time is 48,000 times faster than that of the Monte Carlo method. These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors, inverting nuclear detonation source terms, and assessing ionospheric effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call