Abstract
AbstractSulfuric acid (SA)‐dimethylamine (DMA)‐H2O cluster formation has been proven to be responsible for a significant part of new particle formation (NPF) in a Chinese megacity. However, the possible involvement of common atmospheric acids in the subsequent growth of SA‐DMA clusters remains elusive. We simulated formation and growth of clusters using atmospheric relevant concentrations of SA, DMA, and trifluoroacetic acid (TFA), a commonly observed atmospheric perfluorocarboxylic acid, using Density Functional Theory combined with Atmospheric Cluster Dynamics Code. The presence of TFA leads to complex cluster formation routes and an enhancement of NPF rates by up to 2.3 ([TFA] = 5.0 × 106 molecules cm−3, [SA] = 1.0 × 106 molecules cm−3, and [DMA] = 1.5 × 109 molecules cm−3). The agreement of (SA)1·(DMA)1‐2·(TFA)1 concentrations between simulations and ambient measurements during NPF events validates model predictions and implies that perfluorocarboxylic acids could potentially boost atmospheric SA‐DMA NPF rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.