Abstract
The formation of molecular clusters and secondary aerosols in the atmosphere has a significant impact on the climate. Studies typically focus on the new particle formation (NPF) of sulfuric acid (SA) with a single base molecule (e.g., dimethylamine or ammonia). In this work, we examine the combinations and synergy of several bases. Specifically, we used computational quantum chemistry to perform configurational sampling (CS) of (SA)0-4(base)0-4 clusters with five different types of bases: ammonia (AM), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). Overall, we studied 316 different clusters. We used a traditional multilevel funnelling sampling approach augmented by a machine-learning (ML) step. The ML made the CS of these clusters possible by significantly enhancing the speed and quality of the search for the lowest free energy configurations. Subsequently, the cluster thermodynamics properties were evaluated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. The calculated binding free energies were used to evaluate the cluster stabilities for population dynamics simulations. The resultant SA-driven NPF rates and synergies of the studied bases are presented to show that DMA and EDA act as nucleators (although EDA becomes weak in large clusters), TMA acts as a catalyzer, and AM/MA is often overshadowed by strong bases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.