Abstract

Based on a 3-year (2011–2013) dataset of 10-min records collected at 10, 20, 40, and 80 m from the met mast of Cabauw, a time-varying investigation of the wind shear coefficient (WSC) relationship with atmospheric stability was addressed. WSC interdaily and interannual variability was analysed according to a 2-D combined representation, which confirmed a clear oval-shaped “solar shadow” caused by solar warming observed during diurnal unstable hours, and large WSCs occurring under strong stable conditions during the summer nights.Three different power law based approaches were compared to extrapolate wind resource to the turbine hub height according to the following WSC settings: (i) site's previously measured overall yearly average; (ii) site's previously measured stability-varying yearly averages; (iii) 10-min theoretically predicted values by applying the Panofsky and Dutton (PD) model. The latter proved to be the finest approach, providing extrapolated wind resource biased by 1–5% and energy yield by 5.51–10.57%, and showing the highest accuracy occurring under the most frequent (and most energetic) neutral conditions, when Weibull distribution's tail including the highest wind speed bins is particularly finely reproduced.This work confirmed how instrumental availability of detailed information on site's atmospheric stability classification is for wind energy studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call