Abstract

The power performance assessment of a small wind turbine (SWT) based on atmospheric stability is reported herein. An experimental setup was used to study a 2.1 kW SWT in a suburban environment, where 1 Hz power collection data and 20 Hz turbulent flux measurements were obtained. The dataset consists of 4287 h of raw data covering a 6-month period. The measured International Electrotechnical Commission-based (IEC) power curve shows an average performance 30 % above the manufacturer’s curve, but with decreasing power output close to the rated wind speed. Values relating power collection increase at low wind speeds with high turbulence levels concur with previous studies. The Obukhov length was used as a stability parameter, and stability-dependent power curves were compared with the measured average. Above 8 m/s, unstable conditions were predominant and evidenced the decreasing power tendency, where turbulence intensity (TI) was unable to give consistent results. The results reported in this chapter validate an approach suitable for SWT assessment using a physical parameter as a classification criterion, which better explains the power collection behaviour close to rated conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.