Abstract

From allergies to plant reproduction, pollens have important impacts on the health of human and plant populations, yet identification of pollen grains remains difficult and time-consuming. Low-volatility flavonoids generated from pollens cannot be easily characterized and quantified with current analytical techniques. Here we present the novel use of atmospheric solids analysis probe mass spectrometry (ASAP-MS) for the characterization of flavonoids in pollens. Flavonoid patterns were generated for pollens collected from different plant types (trees and bushes) in addition to bee pollens from distinct geographic regions. Standard flavonoids (kaempferol and rhamnazin) and those produced from pollens were compared and assessed with ASAP-MS using low-energy collision MS/MS. Results for a semi-quantitative method for assessing the amount of a flavonoid in pollens are also presented. Flavonoid patterns for pollen samples were distinct with variability in the number and relative abundance of flavonoids in each sample. Pollens contained 2-5 flavonoids, and all but Kochia scoparia contained kaempferol or kaempferol isomers. We establish this method as a reliable and applicable technique for analyzing low-volatility compounds with minimal sample preparation. Standard curves were generated using 0.2-5μg of kaempferol; from these experiments, it was estimated that there is approximately 2mg of kaempferol present in 1g of P. nigra italica pollen. Pollens can be characterized with a simple flavonoid pattern rather than analyzing the whole product pattern or the products-temperature profiles. ASAP-MS is a rapid analytical technique that can be used to distinguish between plant pollens and between bee pollens originating from different regions. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call