Abstract

Silicon (Si) is considered a “quasi-essential” nutrient element for plants and is also an essential nutrient for some phytoplankton. Except for the silicate provided by weathering, atmospheric deposition has gradually become an important supplementary method for Si nutrients to enter the ecosystem. However, national observational studies on atmospheric silicon deposition have not yet been reported. Herein, based on the China Wet Deposition Observation Network, we continuously collected monthly wet deposition samples from 43 typical ecosystems from 2013 to 2020 and measured the content of dissolved silica (dSi) in precipitation to quantify the spatiotemporal patterns of Si wet deposition in China. The results showed that the mean annual dSi wet deposition in China during 2013–2020 was approximately 2.07 ± 0.27 kg ha−1 yr−1. Atmospheric dSi deposition was higher in Southwest, North, and South China but lower in the Northwest and Northeast China, which was mainly regulated by precipitation and soil available Si content. There was no significant annual variation trend in dSi deposition during 2013–2020 in China, which showed disorderly fluctuations from year to year. This study revealed the spatiotemporal patterns of atmospheric dSi deposition in China for the first time, which can provide unique scientific data to explore the potential effect of dSi deposition on carbon sequestration in aquatic ecosystems. A comprehensive evaluation of the nutrient balance of aquatic ecosystems from the perspective of nitrogen, phosphorus, and silicon stoichiometry is required in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.