Abstract

We demonstrate the feasibility of using novel, small energy harvesters to power atmospheric sensors and radios simply attached to a single conductor of existing overhead power distribution lines. We demonstrate the ability to harvest the required power for operating multiple atmospheric and power-system sensors, together with short-range radios that could broadcast atmospheric sensor data to the cellphones of people nearby. Occasional long-range broadcasts of the data could also be made of both atmospheric and power-line conditions.

Highlights

  • The growing recognition of the hazards of atmospheric pollution, and the participation with atmospheric scientists in the development of a particulate matter monitor [1], led us to consider ways of increasing the spatial density of atmospheric measuring points and facilitating the powering of instruments for measuring atmospheric properties

  • In what follows we describe a surprisingly efficient energy harvester that couples to the magnetic field that surrounds a conductor on such a line, and we cite measurements that show that the harvester can deliver enough power to simultaneously operate many different atmospheric sensors and monitors, as well as radios to transmit measured data

  • When this harvester was placed near an alternating current (AC) current-carrying conductor, the cantilever beam vibrated because of coupling of the magnetic field produced by the conductor current to the harvester’s permanent magnets, causing the piezoelectric film to produce an output

Read more

Summary

Introduction

The growing recognition of the hazards of atmospheric pollution, and the participation with atmospheric scientists in the development of a particulate matter monitor [1], led us to consider ways of increasing the spatial density of atmospheric measuring points and facilitating the powering of instruments for measuring atmospheric properties. One seeks widely distributed, small, and inexpensive communicating instruments powered by continuous power sources. One such solution is operating inexpensive wirelessly-enabled monitors and sensors supported on individual conductors of ubiquitous overhead distribution power-lines. In what follows we describe a surprisingly efficient energy harvester that couples to the magnetic field that surrounds a conductor on such a line, and we cite measurements that show that the harvester can deliver enough power to simultaneously operate many different atmospheric sensors and monitors, as well as radios to transmit measured data

Energy Harvester
Pollutants and Sensor Calibration
Atmospheric Sensors to Consider Deploying
Power-System Sensors to Consider Deploying
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.