Abstract

Scintillation is increased when laser propagates long distance near horizontally in atmospherics, which limits the ability of conventional adaptive optical system. A theoretical analysis is presented based on extend Huygens-Fresnel theory for Gaussian beam profile. Numerical simulations based on wave optics computer code are given for different atmospheric condition. For given Rytov variance different turbulence strength and propagating distance are considered. Various receiving and projecting apertures are also considered. Rytov variance and propagation Fresnel have more effect on Strehl ratio. The expressions of Strehl ratio versus Rytov variance are obtained from weak to strong scintillation. For given Rytov variance, Strehl ratio with Fresnel number is studied. Large aperture has benefit for correction. The results show that Strehl ratio increases with Fresnel number and saturates to the limit of ideal phase-only correction for given Rytov variance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call