Abstract

Abstract The kinetic energy of the atmosphere is not spread uniformly over all wavelengths but has certain preferred scales, with gaps in between. Typically atmospheric structures are either fully three dimensional with horizontal wavelengths of the order of 100 m to several kilometers, such as convection cells (including thunderstorms) and mechanically driven eddies; or they are quasi-two-dimensional with horizontal dimensions of order of thousands of km. The first group of systems derives its energy from Kelvin-Helmholtz and hydrostatic instability, which depends on vertical gradients of wind and temperature; the second group is associated with barotropic or baroclinic instability, which depends on horizontal gradients of temperature and wind. Aloft, the small-scale systems are relatively less frequent than near the ground; on the other hand, intermediate-scale systems seem to be more common.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.