Abstract
ABSTRACTAtmospheric rivers (ARs), filamentary patterns of strong water vapour fluxes, play a prominent role in global poleward moisture transport and have profound impacts on extreme rainfalls (ERs). Previous AR research has mainly focused on the mid‐latitude regions, whereas the characteristics of ARs in low latitudes and their relationship with local ERs remain largely unknown. This study investigates the spatiotemporal characteristics of ARs over the Bay of Bengal and their relationship with ERs after landing on the northern Indian subcontinent using the ERA‐Interim reanalysis data. During the study period from 1979 to 2011, a total of 149 ARs have been identified, which feature a bimodal temporal pattern with more events observed in May and October. The AR axes generally stretch northeastwards over the bay and land in Bangladesh and Burma. A total of 24% of ARs occurring during tropical cyclones implies a possible connection between them, in addition to the similar intra‐annual distribution. In summer, as the tropical cyclones are weak and the northward water vapour flux decreases due to topographic blocking of the Western Ghats, it is less likely to form intensified water vapour pathway, though the atmospheric humidity is high in the study region. Furthermore, a close correlation between ARs and ERs is manifested. A large proportion of ARs would lead to ERs, with a small fraction of ERs occur after ARs. In addition, although persistent ARs constitute the majority of identified events, rainfall intensity will not be enhanced by the increase in AR duration. This study enriches the knowledge of AR characteristics in low latitudes and provides new pathways to understand the hydrological cycles in the Indian Peninsula and the Bay of Bengal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.