Abstract
AbstractThe atmospheric river (AR) response to Arctic sea ice loss in the Northern hemisphere winter is investigated using simulations from the Polar Amplification Model Intercomparison Project. Results have shown that the midlatitude responses are dominated by dynamic effects. Poleward of around , the dynamic and thermodynamic effects cancel each other, resulting in relatively small responses. The response uncertainty can be characterized by leading uncertainty modes, with the responses over the Pacific and Atlantic projecting onto the northeastward extension and equatorward shift mode, respectively. In addition, the responses seem to be mean state‐dependent: under the same forcing, models with more poleward‐located climatological ARs tend to show stronger equatorward shifts over the Atlantic; over the Pacific, models with more westward‐located climatological AR core tend to show stronger northeastward extensions. These relationships highlight the importance of improving the AR climatology representation on reducing the response uncertainty to Arctic sea ice loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.