Abstract

Abstract Atmospheric rivers (ARs) are narrow, elongated corridors of high water vapor content transported from tropical and/or extratropical cyclones. We characterize precipitation and snow water equivalent associated with ARs intersecting the western U.S. coast during the cold season (November– March) of water years 1949–2015. For each AR landfalling date, we retrieved the precipitation and relevant hydrometeorological variables from dynamically downscaled atmospheric reanalyses (NCEP–NCAR) using the WRF mesoscale numerical weather prediction model. Landfalling ARs resulted in higher precipitation amounts throughout the domain than did non-AR storms. ARs contributed the most extreme precipitation events during January and February. Daily snow water equivalent (SWE) changes during ARs indicate that high positive net snow accumulation conditions accompany ARs in December, January, and February. We also assess the historical impact of AR storm duration and precipitation frequency by considering the precipitation depth estimated during a 72-h window bounding the AR landfall date. More extreme precipitation amounts are produced by ARs in the South Cascades and Sierra Nevada ranges compared with ARs with landfall farther north. Most AR extreme precipitation events (and lower SWE accumulations) are produced during warm AR dates, especially toward the northern end of our domain. Analysis of ARs during dry and wet years reveals that ARs during wet years are more frequent and produce heavier precipitation and snow accumulation as compared with dry years. Such conditions are evident in drought events that are associated with a reduced frequency of ARs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call