Abstract

AbstractThe atmospheric water residence time is a fundamental descriptor that provides information on the timescales of evaporation and precipitation. In this study, a regional climate model‐based evaporation tagging algorithm is extended with an age tracer approach to calculate moisture residence times, defined as time between the original evaporation and the returning of water masses to the land surface as precipitation. Our case study addresses how long this time is for the transpired and for the direct evaporated moisture. Our study region is the Poyang Lake region in Southeast China, the largest freshwater lake in the country. We perform simulations covering the period from October 2004 to December 2005. In 2005, 11% of direct evaporated water (10% of transpired water) precipitates locally. Direct evaporated water accounts for 64% and transpired water for 36% of the total tagged moisture with a mean age of around 36 h for both. Considering precipitation, a large proportion (69%) originates from direct evaporated water with a mean atmospheric residence time of 6.6 h and a smaller amount from transpired water with a longer residence time of 10.7 h. Modulated by the East Asian monsoon, the variation of the meteorological conditions, the magnitude of the partitioned moisture, and the corresponding residence time patterns change seasonally and spatially and reveal the different fate of transpired and direct evaporated water in the atmospheric hydrological cycle. We conclude that our methodological approach has the potential to be used for addressing how timescales of the hydrological cycle changes regionally under global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call