Abstract

This paper reports prototype atmospheric-pressure plasma jet (APPJ)-processed reduced graphene oxide (rGO)-modified carbon electrochemical sensors integrated with 3D-printed microfluidic channels. Dopamine (DA) solutions with various concentrations are used for the model test. The APPJ-calcined rGO coating significantly enhances the electrochemical signal for DA detection by 18 times. X-ray photoelectron spectroscopy (XPS) shows that APPJ-calcined rGO-modified carbon electrodes have more oxygen-containing surface functional groups, leading to the enhanced electrochemical reactivity. The cyclic voltammetry (CV) curves of solutions with various DA concentrations are well-distinguishable in the presence of uric acid (UA) and ascorbic acid (AA) as interfering agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.