Abstract

Nickel-based superalloy Inconel 718 is one of the hardest materials owing to its high hardness and additional physical properties. It is the most commonly used superalloy in gas turbine, aerospace, and automobile sectors. Micro-milling is generally employed for precision manufacturing of tiny structures, but it is difficult to obtain good surface quality with micro-milling Inconel 718 because of its excellent mechanical properties like high strength and hardness. Atmospheric pressure cold plasma jet can effectively improve surface wettability without changing surface micromorphology, which is expected to have positive lubricating effects in micro-machining of difficult-to-cut materials. In addition, minimum quantity lubrication can induce coolants into the machining area more efficiently, and is especially appropriate for micro-machining. In this paper, we propose a composite micro-milling method combining plasma jet and minimum quantity lubrication to machine Inconel 718. The effect of plasma jet on machinability is investigated by performing micro-milling experiments under different atmospheres (dry, nitrogen jet, plasma jet, minimum quantity lubrication, and plasma + minimum quantity lubrication). Surface roughness, cutting forces, and residual stress are the measures using corresponding techniques. The results indicate that the atmospheric pressure cold plasma jet can efficiently improve surface quality and reduce cutting forces of Inconel 718.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call