Abstract
In this work, an atmospheric-pressure dielectric barrier discharge process is exploited for the fast deposition of adherent epoxy-rich layers acting as a versatile platform for the efficient one-step biomolecule immobilization in mild aqueous conditions. Particular attention is given to the influence of the plasma process parameters on the chemical and morphological properties of the deposited layers and on their subsequent exploitation for chemical interfacial reactions. As a proof-of-concept, two enzymes with drastically different biological properties, namely dispersin B and a laccase, are immobilized onto functionalized metallic surfaces. The pH of the enzyme solution appears as a key parameter to control the amount of immobilized enzyme on the plasma functionalized surfaces, thus leading to bioactive surfaces with improved stability and activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.