Abstract

Accurate determination of the calibration constant is essential for the reliable determination of indoor radon air concentrations using alpha-track detectors. One possible source of error in the application of this method of radon assay is an effect of air density on the calibration factor. Such an effect, if present, could contribute to systematic errors in radon measurements where the calibration facility and the location measured were at different altitudes above sea level. To investigate this question, cellulose nitrate alpha-track detectors were exposed to known air concentrations of 222Rn over a range of air pressure in a systematic study of the effect of simulated altitude on the calibration constant (track density)/(integrated radon exposure). The values obtained for the calibration constant at known air-pressure values were used to establish correction factors as a function of equivalent altitude for this alpha-track method of radon assay. This correction may then be applied to compensate for the effect of altitude on radon-in-air determinations by this method. Altitude effects were evaluated for two detector configurations (the closed-can geometry and the open, or bare-detector geometry). The calibration constants (tracks cm-2) (kBq h m-3)-1 obtained exhibit an inverse relationship with air pressure (i.e., vary directly with altitude). The results indicate (as an example) that for an increase in altitude of approximately 1,000 m above sea level, the calibration constant for Kodak LR 115 II detectors increases by 28% for the closed-can geometry. For an altitude of 1,500 m above sea level, the calibration constant increases by 41% for closed detectors and by 63% for the open (bare) detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.