Abstract

The production of crystalline silicon thin-film solar cells on cost effective ceramic substrates depends on a highly reliable diffusion barrier to separate the light absorbing layers from the substrate. Ideally this intermediate layer should be deposited with cost effective techniques, be conductive and should feature optical confinement. Furthermore the intermediate layer should withstand high temperatures and harsh chemical environments like they occur during solar cell processing. Especially stability against oxidizing solvents like HNO3 or inactivity during e.g., oxide removing steps with HF is required. Crystalline silicon carbide (c-SiC) deposited by atmospheric pressure chemical vapour deposition (APCVD) can match all those requirements and additionally fits the thermal properties of crystalline silicon. The c-SiC intermediate layer is deposited from methyltrichlorosilane (MTS) and H2 at 1100 degrees C. Under these conditions, growth of solely cubic 3C-SiC could be observed by X-ray diffraction measurements. Use of such intermediate layers during high temperature steps prevents diffusion of transition metals, originating from the substrates, into active silicon layers. Doping of these 3C-SiC layers with nitrogen results in specific resistivity of less than 100 ohms cm. The different potentially cost-effective substrates are made from graphite, crystalline silicon, sintered silicon carbide and sintered zircon (ZrSiO4). Surface properties of the coated substrates were investigated, explaining changes in surface roughness and influences on the solar cell processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.