Abstract

This paper describes differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The approach to the pressure measurements1 utilizes a high resolution measurement of absorption in the wings of lines in the oxygen A band where the absorption is highly pressure sensitive throug] the mechanism of collisional line broadening. The approach for temperature2 uses a measurement of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy. The population of the state depends strongly on temperature through the Boltzmann term which produces a highly sensitive temperature determination. Oxygen is used for these measurements since it is uniformly mixed in the atmosphere, which greatly simplifies the measurement approach, and has lines with appropriate strength and energy levels. Also, it is located in a spectral region (760 nm) easily accessible using tunable solid state and dye lasers and efficient detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.