Abstract

CO2 hydrogenation to methanol is a promising process for CO2 conversion and utilization. Despite a well-developed route for CO hydrogenation to methanol, the use of CO2 as a feedstock for methanol synthesis remains underexplored, and one of its major challenges is high reaction pressure (usually 30–300 atm). In this work, atmospheric pressure and room temperature (∼30 °C) synthesis of methanol from CO2 and H2 has been successfully achieved using a dielectric barrier discharge (DBD) with and without a catalyst. The methanol production was strongly dependent on the plasma reactor setup; the DBD reactor with a special water-electrode design showed the highest reaction performance in terms of the conversion of CO2 and methanol yield. The combination of the plasma with Cu/γ-Al2O3 or Pt/γ-Al2O3 catalyst significantly enhanced the CO2 conversion and methanol yield compared to the plasma hydrogenation of CO2 without a catalyst. The maximum methanol yield of 11.3% and methanol selectivity of 53.7% were achieved ov...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.