Abstract

Abstract. Precipitable water vapor (PWV) is the vertically integrated amount of water vapor in the atmosphere, and it is a valuable predictor for weather forecasting. Currently, the use of sophisticated instrumentation can limit the number of PWV measurement sites, which affects the accuracy of forecast models in regards to storm formation, strength, and the potential for precipitation. We have analyzed relationships between PWV and zenith sky temperature measurements for the dry climate zone found in the North American Desert Southwest, specifically over Socorro, New Mexico (34∘ N, 107∘ W). Daily measurements of the ground and zenith sky temperatures have been made at Socorro for two complete annual cycles using low-cost infrared thermal sensors. Radiosonde measurements of PWV from National Weather Service stations located in nearby Albuquerque and Santa Teresa, New Mexico, are input into our dataset and analyzed via a newly developed computational tool. Our results show that an exponential relationship between PWV and zenith sky temperature holds for the Desert Southwest, but with parameters that are different than those obtained previously over the more moist climate zone of the North American Gulf Coast. Model simulations can accurately reproduce the observed relationship between PWV and temperature, and the results suggest that half of the signal in temperature is directly related to changes in opacity due to changes in PWV, while the other half is due to changes in air temperature that usually accompany changes in PWV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.