Abstract

Hydroxyapatite (HA) coatings are being widely used in biomedical applications owing to their excellent biocompatibility and osteoconductivity. Recent studies have demonstrated that the crystallographic texture plays an important role in improving the chemical stability and mechanical properties of HA coatings. In this study, optimized APS parameter was selected to deposit HA coatings with strong (002) crystallographic texture, high phase purity and enhanced melting state. Cross-sectional SEM images show uniformly distributed columnar grains perpendicular to the coating surface. To study the formation conditions of columnar grains, coatings with distinct microstructure were deposited with different spray parameters. Moreover, HA coatings were deposited on substrates with varying temperatures such as 25, 300 and 600 °C at a long stand-off distance to evaluate the role of the substrate temperature in the formation of columnar grains. The results indicate that completely molten in-flight particles and slow cooling rate are necessary conditions to form a strong crystallographic texture. The present study suggests that the crystalline structure of HA coatings deposited and formed by APS could be well controlled by modifying spray parameters and substrate temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call