Abstract

Based on the air quality data and conventional meteorological data of the Nanjing Region from January 2015 to December 2016, to analyze the characteristics of O3 concentration changes in the Nanjing Region, a light gradient boosting machine (LightGBM) model was established to predict O3 concentration. The model was compared with three machine learning methods that are commonly used in air quality prediction, including support vector machine, recurrent neural network, and random forest methods, to verify its effectiveness and feasibility. Finally, the performance of the prediction model was analyzed under different meteorological conditions. The results showed that the variation in O3 concentration in Nanjing had significant seasonal differences and was affected by a combination of its pre-concentration, meteorological factors, and other air pollutant concentrations. The LightGBM model predicted the ground-level O3 concentration in the Nanjing area more precisely to a large extent (R2=0.92), and the model outperformed other models in prediction accuracy and computational efficiency. In particular, the model showed a significantly higher prediction accuracy and stability than that of other models under a high-temperature condition that was more likely prone to ozone pollution. The LightGBM model was characterized by its high prediction accuracy, good stability, satisfactory generalization ability, and short operation time, which broaden its application prospect in O3 concentration prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.