Abstract

We present an overview of the development of our understanding of the sources, formation mechanisms, physical and chemical transformations of atmospheric organic aerosol (OA) during the last thirty years. Until recently, organic particulate material was simply classified as either primary or secondary with the primary component being treated in models as nonvolatile and inert. However, this oversimplified view fails to explain the highly oxygenated nature of ambient OA, the relatively small OA concentration gradients between urban areas and their surroundings, and the concentrations of OA during periods of high photochemical activity. A unifying framework for the description of all components based on their volatility distribution (the volatility basis set) can be used for the treatment of a wide range of processes affecting organic aerosol loadings and composition in the atmosphere. These processes include direct organic particle and vapor emissions, chemical production of organic PM from volatile precursors, chemical reactions (aging) in all phases, as well as deposition of both particles and vapors and chemical losses to volatile products. The combination of this new framework with the recent results of laboratory studies can resolve some of the discrepancies between OA observations and laboratory results. The mass balance of the organic material as a function of its volatility is investigated and used to frame the corresponding constraints on the system. Finally we revisit the traditional definitions of primary and secondary organic aerosol and propose a new set of terms and definitions based on the improvements of our understanding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call