Abstract

N2O is a significant atmospheric greenhouse gas that contributes to global warming and climate change. In this work, the high sensitivity detection of atmospheric N2O is achieved using wavelength modulation spectroscopy (WMS) with an inter-band cascade laser operating around 3.939 µm. A LabVIEW-based software signal generator and software lock-in amplifiers are designed to simplify the system. In order to eliminate the interference from water vapor, the detection was performed at a pressure of 0.1 atm (1 atm = 1.01325×105 Pa) and a drying tube was added to the system. To improve the system performance for long term detection, a novel frequency locking method and 2 f/1 f calibration-free method were employed to lock the laser frequency and calibrate the power fluctuations, respectively. The Allan deviation analysis of the results indicates a detection limit of ∼ 20 ppb (1 ppb = 1.81205 µg/m3) for a 1 s integration time, and the optimal detection limit is ∼ 5 ppb for a 40-s integration time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.