Abstract

In this study, an experimental 12-h lead-time flood forecasting methodology that combines the fifth generation mesoscale model (MM5) of the U.S. National Center of Atmospheric Research with the physically based, spatially distributed watershed environmental hydrology (WEHY) model is described and applied to the Shiobara Dam watershed in Japan in order to explore its utility. The Shiobara-Dam watershed is a mountainous steep-sloped watershed that has an area of 123 km2 . Meanwhile, the routine atmospheric assimilation data that are provided by the Japan Meteorological Agency (JMA) over Japan, have spatial resolution of 20 km and are at 12-h time intervals. In order to utilize the JMA’s atmospheric data at 12-h intervals as initial and boundary conditions for 12-h lead-time hourly precipitation forecast inputs to the WEHY model of Shiobara-Dam watershed for runoff forecasts, the MM5 nonhydrostatic atmospheric forecast model was chosen and nested inside the JMA’s data domain. The JMA’s atmospheric data were...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call