Abstract

ABSTRACTThe Madden–Julian oscillation (MJO) dominates tropical weather on intraseasonal 30–90-day time scales, yet mechanisms for its generation, maintenance, and propagation remain unclear. Although surface moist static energy (MSE) flux is greatest under strong winds in the convective phase, sea surface temperature (SST) warms by ~0.3°C in the clear nonconvective phase of the MJO. Winds converging into the hydrostatic low pressure under warm air over the warm SST increase the vertically integrated MSE. We estimate column-integrated MSE convergence using a model of mixed layer (ML) winds balancing friction, planetary rotation, and hydrostatic pressure gradients. Small (0.3 K) SST anomalies associated with the MJO drive 7 W m−2net column MSE convergence averaged over the equatorial Indian Ocean ahead of MJO deep convection. The MSE convergence is in the right phase to contribute to MJO generation and propagation. It is on the order of the total MSE tendency previously assessed from reanalysis, and greater than surface heat flux anomalies driven by intraseasonal SST fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.