Abstract
We present simultaneous, independent measurements of the atmospheric semidiurnal lunar tide in neutral winds and plasma velocities from NASA's Ionospheric Connection Explorer, and in atomic oxygen 135.6 nm airglow measured by the Global‐scale Observations of the Limb and Disk. Westward tidal winds near 115 km at the magnetic equator occur during part of the upward phase of the in‐situ plasma drift. Vertical motions associated with the field‐aligned plasma velocity occur away from the magnetic equator. The morphology of the lunar tide, and the phasing between the airglow and plasma velocities are consistent with E × B drift as a mechanism for linking neutral wind and plasma perturbations. This work provides the first observational quantification of global‐scale E‐ and F‐region coupling through E × B and field‐aligned vertical drifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.