Abstract

The growing demand for nickel and cobalt increases the interest in extracting metals from secondary sources, such as flotation tailings. A preferential strategy for the processing of the complex and/or low-grade secondary sources may be material integration into existing primary processes. In this research, a robust sulfuric acid leaching treatment was studied for metal extraction from sulfidic flotation tailings (Ni 0.45 %, Co 0.80 %, Cu 0.20 %, Zn 0.58 %). The impact of leaching parameters on metals extraction was studied; oxygen gas (1–2 L/min), ferric ions (0.05–0.3 M), and hydrogen peroxide (0.5–0.8 M), temperature (30–90 °C), sulfuric acid concentration (0.2–2 M), and solid–liquid ratio (50–100 g/L). It was found that after 30-minutes 20.0 % of nickel, 5.6 % of cobalt, and 33.0 % of the main impurity iron were extracted using oxygen as oxidant. Increasing temperature and sulfuric acid concentration were shown to have a positive effect on extraction. Also, with the further addition of ferric ions, cobalt extraction could be slightly increased (from 6.2 % to 8.3 %) whereas both nickel and cobalt could be increased with hydrogen peroxide (nickel 22.9 %, cobalt 14.2 %). However, the use of H2O2 can be challenging due to its high environmental footprint as well as partial decomposition by ferric ions, increasing H2O2 consumption further. The results suggest that the mineralogy of the investigated tailings limited feasible metals extraction using atmospheric conditions up to ≈ 20 % for nickel and ≈ 10 % for cobalt, with nickel distributing stronger into non-refractory minerals while cobalt reported more to pyrite. For other base metals, zinc extraction from sphalerite was shown to be efficient (up to ≈ 90 %) whereas copper extraction was limited (up to ≈ 30 %). In future, such atmospheric sulfuric acid leaching may provide a robust recovery route for non-refractory minerals present in the tailings, while full valorization of sulfide tailings matrix will require higher intensity processing with technologies such as pressure oxidation (POX), concentrated chloride leaching, bioleaching, roasting-leaching or very fine milling of the raw material prior to atmospheric leaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.