Abstract

Atmospheric leaching of nickel from limonitic laterite ores is regarded as a promising approach for nickel production, despite its low nickel recovery and slower leaching rate than high pressure acid leaching. Sulfur dioxide can enhance the sulfuric acid leaching of laterite, but its behavior for enhancing atmospheric sulfuric acid leaching was uncertain due to SO2 losses and emission. In this study, sodium sulfite was used as a substitute for SO2 gas in the leaching and the sulfuric acid leaching characteristics of Ni and Fe from a limonitic laterite in the presence of sodium sulfite were investigated. A linear correlation exists between the extraction of Ni and Fe, indicating the difficulty in selective leaching of Ni over Fe. Most nickel is isomorphically substituted within the goethite and it is difficult to dissolve in a high oxidation–reduction potential solution environment, resulting in a low nickel recovery. SO2(aq) generated from the reaction of sodium sulfite in sulfuric acid solution, lowers the potential for the reducing reaction of FeOOH to give Fe2+, accelerating the iron extraction and nickel liberation from goethite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call