Abstract

We present a 3‐D numerical model of atmospheric ionization due to precipitating particles with high spatial resolution. The Atmospheric Ionization Model Osnabrück (AIMOS) consists of two parts: a GEANT4‐based Monte Carlo simulation and a sorting algorithm to assign observations from two polar‐orbiting satellites to horizontal precipitation cells, depending on geomagnetic activity. The main results are as follows: (1) the sorting algorithm and thus the 3‐D mapping of particle fluxes works reasonably well; (2) ionization rates are in good agreement with the ones from earlier models; (3) during quiet times, the major contribution to ionospheric ionization is from electrons both in the polar cap (solar electrons) as well as in the auroral oval (magnetospheric electrons) with the ionization in the auroral oval exceeding that in the polar cap; (4) during solar particle events the dominant effect in the polar cap in the stratosphere and mesosphere is from solar protons although solar electrons can contribute up to 30% to the ionization; (5) during strong shocks following a solar particle event, in the auroral oval magnetospheric electrons and protons lead to ionization rates of up to some 10% of the ones of solar particles; and (6) independent of particle source and precipitation site, in general, ionization by electrons is more important in the thermosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.