Abstract
Noble gases are accreted to the giant planets as part of the gas component of the planet-forming disk. While heavier noble gases can separate from the evolution of the hydrogen-rich gas, helium is thought to remain at the protosolar H/He ratio Yproto∼0.27\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Y_{\\mathrm{proto}}\\sim 0.27$\\end{document}–0.28. However, spacecraft observations revealed a depletion in helium in the atmospheres of Jupiter, Saturn, and Uranus. For the gas giants, this is commonly seen as indication of H/He phase separation at greater depths. Here, we apply predictions of the H/He phase diagram and three H/He-EOS to compute the atmospheric helium mass abundance Yatm\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Y_{\\mathrm{atm}}$\\end{document} as a result of H/He phase separation. We obtain a strong depletion Yatm<0.1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$Y_{\\mathrm{atm}}<0.1$\\end{document} for the ice giants if they are adiabatic. Introducing a thermal boundary layer at the Z-poor/Z-rich compositional transition with a temperature increase of up to a few 1000 K, we obtain a weak depletion in Uranus as observed. Our results suggest dissimilar internal structures between Uranus and Neptune. An accurate in-situ determination of their atmospheric He/H ratio would help to constrain their internal structures. This is even more true for Saturn, where we find that any considered H/He phase diagram and H/He-EOS would be consistent with any observed value. However, some H/He-EOS and phase diagram combinations applied to both Jupiter and Saturn require an outer stably-stratified layer at least in one of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.