Abstract

Abstract Orthonormal wavelet analysis of the primitive momentum equations enables a new formulation of atmospheric energetics, providing a new description of transfers and fluxes of kinetic energy (KE) between structures that are simultaneously localized in both scale (zonal-wavenumber octave) and location spaces. Unpublished modified formulas for global Fourier energetics (FE) are reviewed that conserve KE for the case of a single latitude-circle and pressure level. The new wavelet energetics (WE) is extended to arbitrary orthogonal analyses of compressible, hydrostatic winds, and to formulating triadic interactions between components. In general, each triadic interaction satisfies a detailed conservation rule. Component “self-interaction” is examined in detail, and found to occur (if other components catalyze) in common analyses except complex Fourier. Wavelet flux functions are new spatially localized measures of flux across scale, or wavenumber cascade. They are constructed by appropriately constraine...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.