Abstract

The western North Pacific anomalous anticyclone (WNPAC) is an important low-level circulation system that connects El Niño and the East Asian monsoon. In this study, the mechanisms responsible for the formation and maintenance of the WNPAC are explored. Part I of this study focuses on the WNPAC maintenance mechanisms during El Niño mature winter and the following spring. Moisture and moist static energy analyses indicated that the WNPAC is maintained by both the remote forcing from the equatorial central-eastern Pacific via the atmospheric bridge and the local air–sea interactions. Three pacemaker experiments by a coupled global climate model FGOALS-s2, with upper-700-m ocean temperature in the equatorial central-eastern Pacific restored to the observational anomalies plus model climatology, suggest that about 60% (70%) intensity of the WNPAC during the winter (spring) is contributed by the remote forcing from the equatorial central-eastern Pacific. The key remote forcing mechanism responsible for the maintenance of the WNPAC is revealed. In response to El Niño–related positive precipitation anomalies over the equatorial central-eastern Pacific, twin Rossby wave cyclonic anomalies are induced to the west. The northern branch of the twin cyclonic anomalies advects dry and low moist enthalpy air into the tropical western North Pacific, which suppresses local convection. The suppressed convection further drives the WNPAC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call