Abstract
Atmospheric deposition of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) was investigated at four locations, namely at Yuancun, Wushan, Haizhu and Changban in Guangzhou City, Guangdong Province. The annual deposition fluxes of tetra- to octa-CDD/Fs (total PCDD/Fs) were found to range from 170 to 3000 (mean 1500) pg m −2 day −1, and the fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners ranged from 2.1 to 41 (mean 20) pg WHO-TEQ m −2 day −1 at Wushan. The average deposition fluxes of total 2, 3, 7, 8-substituted PCDD/F congeners in rainy season were found to be 37, 27 and 28 pg WHO-TEQ m −2 day −1 at Yuancun, Haizhu and Changban, respectively, and the PCDD/F deposition fluxes behaved obviously higher in rainy season than in dry season. Results from regression analysis showed that number of rainy days, the amount of wet precipitation, PCDD/F concentrations in particles and organic carbon content played important roles in the variation of PCDD/F deposition fluxes. Monthly average temperatures change little over the year. Therefore, it only played a minor role in monthly variation of PCDD/F deposition fluxes. Particle deposition fluxes were generally not considered as the factor that could cause the differences in PCDD/F deposition fluxes between rainy and dry season, but were found to be related with PCDD/F deposition fluxes in rainy season or dry season. It was found that the profiles of PCDD/F homologs or congeners in the samples were the same either spatially or temporally, indicating that the PCDD/F emission sources were similar to one another. The similarities in PCDD/F homolog patterns and the differences in deposition fluxes between samples collected from heavy-traffic roadside and nearby residence house roof indicated that vehicle exhaust might be an important source for PCDD/F in Guangzhou. PCDD/F concentrations and profiles of PCDD/F homologs in atmospheric deposition were compared with those in both total suspended particles in air and soils, and conclusions indicated that atmospheric deposition possibly tended to remove lower-chlorinated DD/Fs from air and was one of sources for PCDD/Fs in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.