Abstract

The effect of HNO 3 on the atmospheric corrosion of copper has been investigated at varied temperature (15–35 °C) and relative humidity (0–85% RH). Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) confirmed the existence of cuprite and gerhardtite as the two main corrosion products on the exposed copper surface. For determination of the corrosion rate and for estimation of the deposition velocity ( V d) of HNO 3 on copper, gravimetry and ion chromatography has been employed. Temperature had a low effect on the corrosion of copper. A minor decrease in the mass gain was observed as the temperature was increased to 35 °C, possibly as an effect of lower amount of cuprite due to a thinner adlayer on the metal surface at 35 °C. The V d of HNO 3 on copper, however, was unaffected by temperature. The corrosion rate and V d of HNO 3 on copper was the lowest at 0% RH, i. e. dry condition, and increased considerably when changing to 40% RH. A maximum was reached at 65% RH and the mass gain remained constant when the RH was increased to 85% RH. The V d of HNO 3 on copper at ⩾65% RH, 25 °C and 0.03 cm s −1 air velocity was as high as 0.15±0.03 cm s −1 to be compared with the value obtained for an ideal absorbent, 0.19±0.02 cm s −1. At sub-ppm levels of HNO 3, the corrosion rate of copper decreased after 14 d and the growth of the oxide levelled off after 7 d of exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.