Abstract

Variable atmospheric conditions are typically ignored in the retrieval of geophysical parameters of the Earth’s surface when using spaceborne passive microwave observations. However, high frequencies, for example, 91.7 GHz, are sensitive to variable atmospheric absorption, even in winter’s dry conditions. In this article, the influence of variable atmospheric absorption on snow cover extent (SCE) mapping was quantitatively investigated. A physical method was derived to enable atmospheric correction for variable atmospheric conditions. The total column precipitable water vapor (TPWV) from Moderate Resolution Imaging Spectroradiometer (MODIS) was parametrized into transmittances in this correction method. The corrected brightness temperature at 19 and 91.7 GHz from the Special Sensor Microwave Imager Sounder (SSMIS) was applied to the threshold algorithm for snow mapping over China. Compared with the Interactive Multisensor Snow and Ice Mapping System (IMS) data in winter from 2012 to 2013, for Qinghai–Tibet plateau (QTP), a significant improvement after correction was obtained from February to March over ephemeral and shallow snow, where the largest daily improvement of accuracy is up to 20%. The accuracy (incl. precision, recall, and F1 index) improved on average is from 0.77 (0.60, 0.68, and 0.63) to 0.79 (0.69, 0.7, and 0.68) over the full winter time from December to March. Over forest-rich Northeast China, where snow in winter is thicker, small improvement was observed at the onset of the snow season and over snow margin area. It was evidenced that high frequency is a promising way of snow cover mapping with the proposed atmospheric correction method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.