Abstract

This work aimed to investigate the inactivation mechanism of atmospheric cold plasma (ACP) against Shewanella putrefaciens both in PBS and sterile shrimp juice (SSJ). Reductions in cell density, cell viability, and biofilm formation activity were observed after ACP treatment. ACP cyclical treatment (1 min, 5 times) was more efficient than a one-time treatment (5 min, 1 time). After ACP cyclical treatment, the cell counts and cell viability of S. putrefaciens in PBS were decreased by 3.41 log CFU/mL and 85.30 %, respectively. As for SSJ group, the antibacterial efficiency of ACP declined, but the antibacterial effect of ACP cyclical treatment was still stronger than that of ACP one-time treatment. The biofilm formation activity of S. putrefaciens in PBS was almost completely inhibited, while it gradually returned to normal level with the prolonged of storage time for the SSJ counterpart. The rapid decrease in AKP activity after ACP treatment indicated the damage to cell wall integrity, which was also demonstrated by TEM. In addition, cell membrane and DNA damage of the strain also occurred after ACP treatment. The ROS fluorescence intensity in PBS was higher for the one-time treatment group, while the cyclical treatment group exhibited higher and more stable ozone levels. It was also detected that the total nitric oxide concentration in bacterial suspension depended on the dose of ACP treatment time. ACP treatment (35 kV) for 5 min, especially cyclical treatment, displayed its antibacterial properties on packaged shrimp contaminated with high concentration of S. putrefaciens. ACP cyclical treatment reduced surface bacterial counts of whole shrimps by 0.52 log CFU/mL, while ACP one-time treatment only achieved a decrease of 0.18 log CFU/mL. Therefore, ACP treatment could be considered as a potential alternative to enhance microbial control in food processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.