Abstract

Abstract. We describe CO2 concentration measurement systems based on relatively inexpensive single-cell non-dispersive infrared CO2 sensors. The systems utilize signal averaging to obtain precision (1-σ in 100 s) of 0.1 parts per million dry air mole fraction (ppm), frequent calibrations and sample drying in order to achieve state-of-the-art compatibility, and can run autonomously for months at a time. Laboratory tests indicate compatibility among four to six systems to be ±0.1 ppm (1-σ), and field measurements of known reference-gases yield median errors of 0.01 to 0.17 ppm with 1-σ variance of ±0.1 to 0.2 ppm. From May to August 2007, a system co-located with a NOAA-ESRL dual-cell NDIR system at the WLEF tall tower in Wisconsin measured daytime-only daily averages of CO2 that differ by 0.26 ± 0.15 ppm (median ± 1 σ), and from August 2005 to April 2011 a system co-located with weekly NOAA-ESRL network flask collection at Niwot Ridge, Colorado measured coincident CO2 concentrations that differed by −0.06 ± 0.30 ppm (n = 585). Data from these systems are now supporting a wide range of analyses and this approach may be applicable in future studies where accuracy and initial cost of the sensors are priorities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.