Abstract

Volatile methyl siloxanes (VMS) are ubiquitous anthropogenic pollutants that have recently come under scrutiny for their potential toxicity and environmental persistence. In this work, we determined the rate constants for oxidation by OH radicals and Cl atoms at 297 ± 3 K and atmospheric pressure in Boulder, CO (∼860 mbar) of hexamethyldisiloxane (L2), octamethyltrisiloxane (L3), decamethyltetrasiloxane (L4), dodecamethylpentasiloxane (L5), hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). Measured rate constants with OH radicals were (1.20 ± 0.09) × 10-12, (1.7 ± 0.1) × 10-12, (2.5 ± 0.2) × 10-12, (3.4 ± 0.5) × 10-12, (0.86 ± 0.09) × 10-12, (1.3 ± 0.1) × 10-12, and (2.1 ± 0.1) × 10-12 cm3 molec-1 s-1, for L2, L3, L4, L5, D3, D4, and D5, respectively. The rate constants for reactions with Cl atoms with the same compounds were (1.44 ± 0.05) × 10-10, (1.85 ± 0.05) × 10-10, (2.2 ± 0.1) × 10-10, (2.9 ± 0.1) × 10-10, (0.56 ± 0.05) × 10-10, (1.16 ± 0.08) × 10-10, and (1.8 ± 0.1) × 10-10 cm3 molec-1 s-1, respectively. Substituent factors of F(-Si(CH3)2OR) and F(-SiCH3(OR)2) are proposed for use in AOPWIN, a common model for OH radical rate constant estimations. Cl atoms can remove percentage levels of VMS globally with potentially increased importance in urban areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.