Abstract

AbstractSmog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of CH2FOCH2F in 700 Torr of N2/O2 at 296 K. Relative rate techniques were used to measure k(Cl + CH2FOCH2F) = (4.6 ± 0.7) × 10−13 and k(Cl + CH2FOC(O)F) = (2.9 ± 0.8) × 10−15 (in units of cm3 molecule−1 s−1). Three competing fates for alkoxy radical CH2FOCHFO· formed in the self‐reaction of the corresponding peroxy radicals were identified. In 1 atm of air at 296 K, 48 ± 3% of CH2FOCHFO· radicals decompose via CO bond scission, 21 ± 4% react with O2, and 31 ± 4% undergo hydrogen atom elimination. Chemical activation effects were observed for CH2FOCHFO· radicals formed in the CH2FOCHFOO· + NO reaction. Infrared spectra of CH2FOC(O)F and FC(O)OC(O)F, which are produced during the Cl atom initiated oxidation of CH2FOCH2F, are presented. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 139–147, 2002; DOI 10.1002/kin.10038

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call