Abstract

A quartz-enhanced photoacoustic spectroscopy methane (CH4) sensor with vibrational to translational (V-T) relaxation self-calibration was realized and tested for atmospheric CH4 detection near a landfill. To normalize the influence of H2O vapor on the CH4 energy relaxation rate, CH4 and H2O concentrations were detected simultaneously by means of a frequency division multiplexing technique, in which a custom quartz tuning fork was operated in the fundamental and first overtone combined vibration mode. A continuous wave, thermoelectrically cooled distributed feedback interband cascade laser emitting at 3.3 μm and a near-infrared DFB laser emitting at 1.37 μm were used as the excitation source for CH4 and H2O detection, respectively. A theoretical model of V-T relaxation and self-calibration method were developed to allow this CH4 sensor to have a simple setup and a small sensor size. Continuous field measurements were carried out near the largest sanitary landfill in Shanxi province, China, to demonstrate the stability and ruggedness of the realized CH4 sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call