Abstract

The first 12 years (1974–1985) of continuous atmospheric CO2 measurements from the NOAA GMCC program at the Mauna Loa Observatory in Hawaii are analyzed. Hourly and daily variations in the concentration of CO2 due to local sources and sinks are described, with subsequent selection of data representing background concentrations. A digital filtering technique using the fast Fourier transform and low‐pass filters was used to smooth the selected data and to separate the seasonal cycle from the long‐term increase in CO2. The amplitude of the seasonal cycle was found to be increasing at a rate of 0.05±0.02 ppm yr−1. The average growth rate of CO2 was 1.42±0.02 ppm yr−1, and the fraction of CO2 remaining in the atmosphere from fossil fuel combustion was 59%. A comparison between the Mauna Loa continuous CO2 data and the CO2 flask sample data from the sea level site at Cape Kumukahi, Hawaii, showed that the amplitude of the seasonal cycle at Cape Kumukahi was 23% larger than at Mauna Loa, with the phase of the cycle at Mauna Loa lagging the cycle at Cape Kumukahi by about 1–2 weeks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.