Abstract

The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets “highlighted” by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric “beacons of life” create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.

Highlights

  • Detection of signatures of life from remote exoplanetary systems is the ultimate goal of astrobiology

  • The major biosignature gases from an Earth-like “living” planet around a Sun-like star are difficult to detect with current telescopes and require long exposures with high spectral, high contrast, and high spatial resolution coronographic instruments on ground-based telescopes such as the Giant-Magellan Telescope (GMT), the Ten Meter Telescope (TMT), the European Extremely Large Telescope E-ELT, and space-based telescopes such as the Habitable Explorere (HabEx), the Large UV Optical and Infrared (LUVOIR), and the Origins Space Telescope (OST)[15,16]

  • Observations made over the last 15 years with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument aboard NASA’s TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics) satellite have revealed that the emitting power of Nitric oxide (NO) is strongly correlated with the solar activity cycle traced by the solar radio flux at 10.7 cm, the indicator of solar activity as well as the indices that trace the strength of Coronal Mass Ejection (CME) induced geomagnetic storms

Read more

Summary

Introduction

Detection of signatures of life from remote exoplanetary systems is the ultimate goal of astrobiology. In this paper we propose that strong non-thermal emission from broad molecular bands in the near- and mid-infrared (mid-IR) referred to as “beacons of life” can be emitted by molecular products of nitrogen- and oxygen-rich exoplanetary atmospheres with high (a large fraction of 1 bar) atmospheric pressures. These include stellar activity driven emission from nitric oxide, hydroxyl and oxygen molecules as the strongest signals that may be observable from the habitable worlds

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call