Abstract
Xylitol is a sugar alcohol that is used as a sweetener in food and confections. Industrially, xylitol is manufactured by chemical hydrogenation of d-xylose, which requires expensive separation and purification steps as well as high pressure and temperature. The microbial production of xylitol has been examined as an alternative to the chemical process. In this study, a xylitol over-producing strain is breeded by mutagenesis of a newly isolated yeast Candida tropicalis with a new mutation breeding system named atmospheric and room temperature plasma. The highest yield strain T31 was screened among more than 200 mutants with a xylitol yield of 0.61 g/g, which represents a yield increase of 22%. Furthermore, a two-stage dissolved oxygen supply strategy was used in a fermentation process resulting the maximum xylitol yield 0.79 g/g, which makes it a promising candidate for xylitol production. Further biochemical analysis indicating the relative gene expression and the enzyme activity of xylose reductase were higher in mutants than those in the original strain, which partly explained the high yield of xylitol. Thus, this study provides a new strategy to breed the over-producing strains for the xylitol industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.